3.2.5 \(\int \frac {x^2 (d^2-e^2 x^2)^{5/2}}{d+e x} \, dx\) [105]

Optimal. Leaf size=140 \[ \frac {d^5 x \sqrt {d^2-e^2 x^2}}{16 e^2}+\frac {d^3 x \left (d^2-e^2 x^2\right )^{3/2}}{24 e^2}+\frac {d (6 d-5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{30 e^3}-\frac {\left (d^2-e^2 x^2\right )^{7/2}}{7 e^3}+\frac {d^7 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{16 e^3} \]

[Out]

1/24*d^3*x*(-e^2*x^2+d^2)^(3/2)/e^2+1/30*d*(-5*e*x+6*d)*(-e^2*x^2+d^2)^(5/2)/e^3-1/7*(-e^2*x^2+d^2)^(7/2)/e^3+
1/16*d^7*arctan(e*x/(-e^2*x^2+d^2)^(1/2))/e^3+1/16*d^5*x*(-e^2*x^2+d^2)^(1/2)/e^2

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 140, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {1653, 12, 799, 794, 201, 223, 209} \begin {gather*} \frac {d^7 \text {ArcTan}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{16 e^3}+\frac {d (6 d-5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{30 e^3}-\frac {\left (d^2-e^2 x^2\right )^{7/2}}{7 e^3}+\frac {d^5 x \sqrt {d^2-e^2 x^2}}{16 e^2}+\frac {d^3 x \left (d^2-e^2 x^2\right )^{3/2}}{24 e^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^2*(d^2 - e^2*x^2)^(5/2))/(d + e*x),x]

[Out]

(d^5*x*Sqrt[d^2 - e^2*x^2])/(16*e^2) + (d^3*x*(d^2 - e^2*x^2)^(3/2))/(24*e^2) + (d*(6*d - 5*e*x)*(d^2 - e^2*x^
2)^(5/2))/(30*e^3) - (d^2 - e^2*x^2)^(7/2)/(7*e^3) + (d^7*ArcTan[(e*x)/Sqrt[d^2 - e^2*x^2]])/(16*e^3)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 201

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p + 1)), x] + Dist[a*n*(p/(n*p + 1)),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 794

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((e*f + d*g)*(2*p
+ 3) + 2*e*g*(p + 1)*x)*((a + c*x^2)^(p + 1)/(2*c*(p + 1)*(2*p + 3))), x] - Dist[(a*e*g - c*d*f*(2*p + 3))/(c*
(2*p + 3)), Int[(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, p}, x] &&  !LeQ[p, -1]

Rule 799

Int[(x_)*((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[d^m*e^m, Int[x*((a + c*x^2)^(m
 + p)/(a*e + c*d*x)^m), x], x] /; FreeQ[{a, c, d, e, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[
m, 0] && EqQ[m, -1] &&  !ILtQ[p - 1/2, 0]

Rule 1653

Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff
[Pq, x, Expon[Pq, x]]}, Simp[f*(d + e*x)^(m + q - 1)*((a + c*x^2)^(p + 1)/(c*e^(q - 1)*(m + q + 2*p + 1))), x]
 + Dist[1/(c*e^q*(m + q + 2*p + 1)), Int[(d + e*x)^m*(a + c*x^2)^p*ExpandToSum[c*e^q*(m + q + 2*p + 1)*Pq - c*
f*(m + q + 2*p + 1)*(d + e*x)^q - 2*e*f*(m + p + q)*(d + e*x)^(q - 2)*(a*e - c*d*x), x], x], x] /; NeQ[m + q +
 2*p + 1, 0]] /; FreeQ[{a, c, d, e, m, p}, x] && PolyQ[Pq, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {x^2 \left (d^2-e^2 x^2\right )^{5/2}}{d+e x} \, dx &=-\frac {\left (d^2-e^2 x^2\right )^{7/2}}{7 e^3}-\frac {\int \frac {7 d e^3 x \left (d^2-e^2 x^2\right )^{5/2}}{d+e x} \, dx}{7 e^4}\\ &=-\frac {\left (d^2-e^2 x^2\right )^{7/2}}{7 e^3}-\frac {d \int \frac {x \left (d^2-e^2 x^2\right )^{5/2}}{d+e x} \, dx}{e}\\ &=-\frac {\left (d^2-e^2 x^2\right )^{7/2}}{7 e^3}-\frac {\int x \left (d^2 e-d e^2 x\right ) \left (d^2-e^2 x^2\right )^{3/2} \, dx}{e^2}\\ &=\frac {d (6 d-5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{30 e^3}-\frac {\left (d^2-e^2 x^2\right )^{7/2}}{7 e^3}+\frac {d^3 \int \left (d^2-e^2 x^2\right )^{3/2} \, dx}{6 e^2}\\ &=\frac {d^3 x \left (d^2-e^2 x^2\right )^{3/2}}{24 e^2}+\frac {d (6 d-5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{30 e^3}-\frac {\left (d^2-e^2 x^2\right )^{7/2}}{7 e^3}+\frac {d^5 \int \sqrt {d^2-e^2 x^2} \, dx}{8 e^2}\\ &=\frac {d^5 x \sqrt {d^2-e^2 x^2}}{16 e^2}+\frac {d^3 x \left (d^2-e^2 x^2\right )^{3/2}}{24 e^2}+\frac {d (6 d-5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{30 e^3}-\frac {\left (d^2-e^2 x^2\right )^{7/2}}{7 e^3}+\frac {d^7 \int \frac {1}{\sqrt {d^2-e^2 x^2}} \, dx}{16 e^2}\\ &=\frac {d^5 x \sqrt {d^2-e^2 x^2}}{16 e^2}+\frac {d^3 x \left (d^2-e^2 x^2\right )^{3/2}}{24 e^2}+\frac {d (6 d-5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{30 e^3}-\frac {\left (d^2-e^2 x^2\right )^{7/2}}{7 e^3}+\frac {d^7 \text {Subst}\left (\int \frac {1}{1+e^2 x^2} \, dx,x,\frac {x}{\sqrt {d^2-e^2 x^2}}\right )}{16 e^2}\\ &=\frac {d^5 x \sqrt {d^2-e^2 x^2}}{16 e^2}+\frac {d^3 x \left (d^2-e^2 x^2\right )^{3/2}}{24 e^2}+\frac {d (6 d-5 e x) \left (d^2-e^2 x^2\right )^{5/2}}{30 e^3}-\frac {\left (d^2-e^2 x^2\right )^{7/2}}{7 e^3}+\frac {d^7 \tan ^{-1}\left (\frac {e x}{\sqrt {d^2-e^2 x^2}}\right )}{16 e^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.23, size = 133, normalized size = 0.95 \begin {gather*} \frac {e \sqrt {d^2-e^2 x^2} \left (96 d^6-105 d^5 e x+48 d^4 e^2 x^2+490 d^3 e^3 x^3-384 d^2 e^4 x^4-280 d e^5 x^5+240 e^6 x^6\right )+105 d^7 \sqrt {-e^2} \log \left (-\sqrt {-e^2} x+\sqrt {d^2-e^2 x^2}\right )}{1680 e^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^2*(d^2 - e^2*x^2)^(5/2))/(d + e*x),x]

[Out]

(e*Sqrt[d^2 - e^2*x^2]*(96*d^6 - 105*d^5*e*x + 48*d^4*e^2*x^2 + 490*d^3*e^3*x^3 - 384*d^2*e^4*x^4 - 280*d*e^5*
x^5 + 240*e^6*x^6) + 105*d^7*Sqrt[-e^2]*Log[-(Sqrt[-e^2]*x) + Sqrt[d^2 - e^2*x^2]])/(1680*e^4)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(316\) vs. \(2(120)=240\).
time = 0.06, size = 317, normalized size = 2.26

method result size
risch \(\frac {\left (240 e^{6} x^{6}-280 d \,e^{5} x^{5}-384 d^{2} e^{4} x^{4}+490 d^{3} e^{3} x^{3}+48 d^{4} e^{2} x^{2}-105 e \,d^{5} x +96 d^{6}\right ) \sqrt {-e^{2} x^{2}+d^{2}}}{1680 e^{3}}+\frac {d^{7} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{16 e^{2} \sqrt {e^{2}}}\) \(119\)
default \(-\frac {\left (-e^{2} x^{2}+d^{2}\right )^{\frac {7}{2}}}{7 e^{3}}-\frac {d \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}{6}+\frac {5 d^{2} \left (\frac {x \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}{4}+\frac {3 d^{2} \left (\frac {x \sqrt {-e^{2} x^{2}+d^{2}}}{2}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-e^{2} x^{2}+d^{2}}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )}{6}\right )}{e^{2}}+\frac {d^{2} \left (\frac {\left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {5}{2}}}{5}+d e \left (-\frac {\left (-2 e^{2} \left (x +\frac {d}{e}\right )+2 d e \right ) \left (-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )\right )^{\frac {3}{2}}}{8 e^{2}}+\frac {3 d^{2} \left (-\frac {\left (-2 e^{2} \left (x +\frac {d}{e}\right )+2 d e \right ) \sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}{4 e^{2}}+\frac {d^{2} \arctan \left (\frac {\sqrt {e^{2}}\, x}{\sqrt {-\left (x +\frac {d}{e}\right )^{2} e^{2}+2 d e \left (x +\frac {d}{e}\right )}}\right )}{2 \sqrt {e^{2}}}\right )}{4}\right )\right )}{e^{3}}\) \(317\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(-e^2*x^2+d^2)^(5/2)/(e*x+d),x,method=_RETURNVERBOSE)

[Out]

-1/7*(-e^2*x^2+d^2)^(7/2)/e^3-d/e^2*(1/6*x*(-e^2*x^2+d^2)^(5/2)+5/6*d^2*(1/4*x*(-e^2*x^2+d^2)^(3/2)+3/4*d^2*(1
/2*x*(-e^2*x^2+d^2)^(1/2)+1/2*d^2/(e^2)^(1/2)*arctan((e^2)^(1/2)*x/(-e^2*x^2+d^2)^(1/2)))))+1/e^3*d^2*(1/5*(-(
x+d/e)^2*e^2+2*d*e*(x+d/e))^(5/2)+d*e*(-1/8*(-2*e^2*(x+d/e)+2*d*e)/e^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(3/2)+3/
4*d^2*(-1/4*(-2*e^2*(x+d/e)+2*d*e)/e^2*(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)+1/2*d^2/(e^2)^(1/2)*arctan((e^2)^(
1/2)*x/(-(x+d/e)^2*e^2+2*d*e*(x+d/e))^(1/2)))))

________________________________________________________________________________________

Maxima [C] Result contains complex when optimal does not.
time = 0.49, size = 186, normalized size = 1.33 \begin {gather*} -\frac {3}{8} i \, d^{7} \arcsin \left (\frac {x e}{d} + 2\right ) e^{\left (-3\right )} - \frac {5}{16} \, d^{7} \arcsin \left (\frac {x e}{d}\right ) e^{\left (-3\right )} + \frac {3}{8} \, \sqrt {x^{2} e^{2} + 4 \, d x e + 3 \, d^{2}} d^{5} x e^{\left (-2\right )} - \frac {5}{16} \, \sqrt {-x^{2} e^{2} + d^{2}} d^{5} x e^{\left (-2\right )} + \frac {3}{4} \, \sqrt {x^{2} e^{2} + 4 \, d x e + 3 \, d^{2}} d^{6} e^{\left (-3\right )} + \frac {1}{24} \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {3}{2}} d^{3} x e^{\left (-2\right )} - \frac {1}{6} \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {5}{2}} d x e^{\left (-2\right )} + \frac {1}{5} \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {5}{2}} d^{2} e^{\left (-3\right )} - \frac {1}{7} \, {\left (-x^{2} e^{2} + d^{2}\right )}^{\frac {7}{2}} e^{\left (-3\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-e^2*x^2+d^2)^(5/2)/(e*x+d),x, algorithm="maxima")

[Out]

-3/8*I*d^7*arcsin(x*e/d + 2)*e^(-3) - 5/16*d^7*arcsin(x*e/d)*e^(-3) + 3/8*sqrt(x^2*e^2 + 4*d*x*e + 3*d^2)*d^5*
x*e^(-2) - 5/16*sqrt(-x^2*e^2 + d^2)*d^5*x*e^(-2) + 3/4*sqrt(x^2*e^2 + 4*d*x*e + 3*d^2)*d^6*e^(-3) + 1/24*(-x^
2*e^2 + d^2)^(3/2)*d^3*x*e^(-2) - 1/6*(-x^2*e^2 + d^2)^(5/2)*d*x*e^(-2) + 1/5*(-x^2*e^2 + d^2)^(5/2)*d^2*e^(-3
) - 1/7*(-x^2*e^2 + d^2)^(7/2)*e^(-3)

________________________________________________________________________________________

Fricas [A]
time = 2.94, size = 109, normalized size = 0.78 \begin {gather*} -\frac {1}{1680} \, {\left (210 \, d^{7} \arctan \left (-\frac {{\left (d - \sqrt {-x^{2} e^{2} + d^{2}}\right )} e^{\left (-1\right )}}{x}\right ) - {\left (240 \, x^{6} e^{6} - 280 \, d x^{5} e^{5} - 384 \, d^{2} x^{4} e^{4} + 490 \, d^{3} x^{3} e^{3} + 48 \, d^{4} x^{2} e^{2} - 105 \, d^{5} x e + 96 \, d^{6}\right )} \sqrt {-x^{2} e^{2} + d^{2}}\right )} e^{\left (-3\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-e^2*x^2+d^2)^(5/2)/(e*x+d),x, algorithm="fricas")

[Out]

-1/1680*(210*d^7*arctan(-(d - sqrt(-x^2*e^2 + d^2))*e^(-1)/x) - (240*x^6*e^6 - 280*d*x^5*e^5 - 384*d^2*x^4*e^4
 + 490*d^3*x^3*e^3 + 48*d^4*x^2*e^2 - 105*d^5*x*e + 96*d^6)*sqrt(-x^2*e^2 + d^2))*e^(-3)

________________________________________________________________________________________

Sympy [C] Result contains complex when optimal does not.
time = 8.58, size = 653, normalized size = 4.66 \begin {gather*} d^{3} \left (\begin {cases} - \frac {i d^{4} \operatorname {acosh}{\left (\frac {e x}{d} \right )}}{8 e^{3}} + \frac {i d^{3} x}{8 e^{2} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} - \frac {3 i d x^{3}}{8 \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} + \frac {i e^{2} x^{5}}{4 d \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\\frac {d^{4} \operatorname {asin}{\left (\frac {e x}{d} \right )}}{8 e^{3}} - \frac {d^{3} x}{8 e^{2} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} + \frac {3 d x^{3}}{8 \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} - \frac {e^{2} x^{5}}{4 d \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} & \text {otherwise} \end {cases}\right ) - d^{2} e \left (\begin {cases} - \frac {2 d^{4} \sqrt {d^{2} - e^{2} x^{2}}}{15 e^{4}} - \frac {d^{2} x^{2} \sqrt {d^{2} - e^{2} x^{2}}}{15 e^{2}} + \frac {x^{4} \sqrt {d^{2} - e^{2} x^{2}}}{5} & \text {for}\: e \neq 0 \\\frac {x^{4} \sqrt {d^{2}}}{4} & \text {otherwise} \end {cases}\right ) - d e^{2} \left (\begin {cases} - \frac {i d^{6} \operatorname {acosh}{\left (\frac {e x}{d} \right )}}{16 e^{5}} + \frac {i d^{5} x}{16 e^{4} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} - \frac {i d^{3} x^{3}}{48 e^{2} \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} - \frac {5 i d x^{5}}{24 \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} + \frac {i e^{2} x^{7}}{6 d \sqrt {-1 + \frac {e^{2} x^{2}}{d^{2}}}} & \text {for}\: \left |{\frac {e^{2} x^{2}}{d^{2}}}\right | > 1 \\\frac {d^{6} \operatorname {asin}{\left (\frac {e x}{d} \right )}}{16 e^{5}} - \frac {d^{5} x}{16 e^{4} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} + \frac {d^{3} x^{3}}{48 e^{2} \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} + \frac {5 d x^{5}}{24 \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} - \frac {e^{2} x^{7}}{6 d \sqrt {1 - \frac {e^{2} x^{2}}{d^{2}}}} & \text {otherwise} \end {cases}\right ) + e^{3} \left (\begin {cases} - \frac {8 d^{6} \sqrt {d^{2} - e^{2} x^{2}}}{105 e^{6}} - \frac {4 d^{4} x^{2} \sqrt {d^{2} - e^{2} x^{2}}}{105 e^{4}} - \frac {d^{2} x^{4} \sqrt {d^{2} - e^{2} x^{2}}}{35 e^{2}} + \frac {x^{6} \sqrt {d^{2} - e^{2} x^{2}}}{7} & \text {for}\: e \neq 0 \\\frac {x^{6} \sqrt {d^{2}}}{6} & \text {otherwise} \end {cases}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(-e**2*x**2+d**2)**(5/2)/(e*x+d),x)

[Out]

d**3*Piecewise((-I*d**4*acosh(e*x/d)/(8*e**3) + I*d**3*x/(8*e**2*sqrt(-1 + e**2*x**2/d**2)) - 3*I*d*x**3/(8*sq
rt(-1 + e**2*x**2/d**2)) + I*e**2*x**5/(4*d*sqrt(-1 + e**2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (d**4*asin(e
*x/d)/(8*e**3) - d**3*x/(8*e**2*sqrt(1 - e**2*x**2/d**2)) + 3*d*x**3/(8*sqrt(1 - e**2*x**2/d**2)) - e**2*x**5/
(4*d*sqrt(1 - e**2*x**2/d**2)), True)) - d**2*e*Piecewise((-2*d**4*sqrt(d**2 - e**2*x**2)/(15*e**4) - d**2*x**
2*sqrt(d**2 - e**2*x**2)/(15*e**2) + x**4*sqrt(d**2 - e**2*x**2)/5, Ne(e, 0)), (x**4*sqrt(d**2)/4, True)) - d*
e**2*Piecewise((-I*d**6*acosh(e*x/d)/(16*e**5) + I*d**5*x/(16*e**4*sqrt(-1 + e**2*x**2/d**2)) - I*d**3*x**3/(4
8*e**2*sqrt(-1 + e**2*x**2/d**2)) - 5*I*d*x**5/(24*sqrt(-1 + e**2*x**2/d**2)) + I*e**2*x**7/(6*d*sqrt(-1 + e**
2*x**2/d**2)), Abs(e**2*x**2/d**2) > 1), (d**6*asin(e*x/d)/(16*e**5) - d**5*x/(16*e**4*sqrt(1 - e**2*x**2/d**2
)) + d**3*x**3/(48*e**2*sqrt(1 - e**2*x**2/d**2)) + 5*d*x**5/(24*sqrt(1 - e**2*x**2/d**2)) - e**2*x**7/(6*d*sq
rt(1 - e**2*x**2/d**2)), True)) + e**3*Piecewise((-8*d**6*sqrt(d**2 - e**2*x**2)/(105*e**6) - 4*d**4*x**2*sqrt
(d**2 - e**2*x**2)/(105*e**4) - d**2*x**4*sqrt(d**2 - e**2*x**2)/(35*e**2) + x**6*sqrt(d**2 - e**2*x**2)/7, Ne
(e, 0)), (x**6*sqrt(d**2)/6, True))

________________________________________________________________________________________

Giac [A]
time = 1.37, size = 96, normalized size = 0.69 \begin {gather*} \frac {1}{16} \, d^{7} \arcsin \left (\frac {x e}{d}\right ) e^{\left (-3\right )} \mathrm {sgn}\left (d\right ) + \frac {1}{1680} \, {\left (96 \, d^{6} e^{\left (-3\right )} - {\left (105 \, d^{5} e^{\left (-2\right )} - 2 \, {\left (24 \, d^{4} e^{\left (-1\right )} + {\left (245 \, d^{3} - 4 \, {\left (48 \, d^{2} e - 5 \, {\left (6 \, x e^{3} - 7 \, d e^{2}\right )} x\right )} x\right )} x\right )} x\right )} x\right )} \sqrt {-x^{2} e^{2} + d^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-e^2*x^2+d^2)^(5/2)/(e*x+d),x, algorithm="giac")

[Out]

1/16*d^7*arcsin(x*e/d)*e^(-3)*sgn(d) + 1/1680*(96*d^6*e^(-3) - (105*d^5*e^(-2) - 2*(24*d^4*e^(-1) + (245*d^3 -
 4*(48*d^2*e - 5*(6*x*e^3 - 7*d*e^2)*x)*x)*x)*x)*x)*sqrt(-x^2*e^2 + d^2)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^2\,{\left (d^2-e^2\,x^2\right )}^{5/2}}{d+e\,x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(d^2 - e^2*x^2)^(5/2))/(d + e*x),x)

[Out]

int((x^2*(d^2 - e^2*x^2)^(5/2))/(d + e*x), x)

________________________________________________________________________________________